Trough Technology Heat Collector Element (HCE) Solar Selective Absorbers

Rod Mahoney
Sandia National Laboratories
June 18, 2000
Trough Workshop ASES 2000

Typical Evacuated Heat Collector Element (HCE)

HCE (Receiver) Reliability

Background

HCE (Receiver) failure / degradation is the single largest cost factor [both performance and O&M] for current & future plants

- 30-40% failure at SEGS VI-IX (9 to 11 years of operation)
- loss of vacuum (glass-to-metal seal or other), solar selective coating degradation in air, broken glass
- Replacement cost is ~\$1000 / HCE (evacuated)
- Annual O&M cost is 0.5 ¢/kWh (Cost/Perf)

HCE (Receiver) Reliability - MWE Study

SEGS VI LS-2 Failures by Cause

Total # HCE (LS-2) Failures: ~4720

SEGS 8 & 9 Harper Lake HCE "Fluorescent" Tubes

-Vacuum Challenged

Glass-to-metal seal failures

Causes:

- •Flux Induced Thermal Stress (increased in winter)
- •Hydrogen Removal Tube
- •Vibration

HCE (Receiver) Reliability - MWE Study

SEGS VII Failures by SCA Type

Total # HCE (LS-2,3) Failures: ~3650

HCE (Receiver) Reliability - MWE Study

SEGS VI - HCE Glass Breakage Failure Rate

National Renewable Energy Laboratory, Golden CO

HCE (Receiver) Reliability

For improved HCE (receiver) reliability technology must address:

- Reducing failures of glass-to-metal seals
 installation: flux and thermal protection ...
- Improving (significantly) air stability of solar selective coating

HCE (Receiver) Reliability Approach

Purchase and Test new Solel UVAC Receiver Solel Claims:

- Improved glass-to-metal seal
- Improved Air-stable cermet selective coating
 Solar Absorptance 97% vs. 95.5%

Thermal Emittance @ 400C : 0.075 vs. 0.18

 Cleanable and improved anti-reflection (AR) coating on glass envelope

Solar Transmittance 97% vs. 96%

HCE (Receiver) Reliability Approach

In Field

SEGS O&M Company Testing and Support Task Ordering Agreement (TOA)

- Performance test (LS-2 test loop)
- Three year reliability monitoring (LS-2 & LS-3 collectors)
- Periodic optical properties assessment, thermal imaging
- Accelerate in-air stability evaluation (hottest locations,

remove glass, breach vacuum)

HCE (Receiver) Reliability Approach

In Laboratory

- Optical Properties Characterization
- Accelerated Thermal Aging various Temps
- Surface Analysis
- Glass-to-metal seal evaluation

HCE (Receiver) Reliability Status

- SEGS Test & Support Task Ordering Agreement
 - KJCOC TOA In Place
 - FPL Energy (In Place?)
- RFP for Solel UVAC Receiver Task Order sent to KJCOC
 - Purchase 350 tubes
 - Expect field install to begin early FY01
 - Expect approximately 40% cost share (half from Solel and half from KJCOC)

Retrofit Low Cost HCE (Receiver)

KJCOC Concept

Using existing cermet tubing

- Replace glass envelope and re-evacuate glass-to-metal seal with adhesive - ongoing SunLab support late FY00 - contract support
- Significant technical challenge
 Expect initial limited success with this approach

Retrofit Low Cost HCE (Receiver)

SunLab Alternative Approach

Using existing cermet tubing

- Apply protective (oxidation) coating over cermet
- Accelerate thermal aging (in air)
- Results promising

Selective Absorber - Cermet

Selective Absorber - Cermet

Retrofit Low Cost HCE (Receiver)

SunLab Alternative Approach

Using existing cermet tubing

- Both KJCOC and Harper Lake very interested
 100s of "good" cermet tubes available
 Harper: on-site assembly of glass envelope (plus ...)
- Prototype coating operation at Energy Laboratories, Inc.(ELI)
- Full length tubing (4 meters) process spring 2001
- HCE cost <\$250 each (non-evacuated, not installed, ...)

Black Crystal Solar Selective Absorber

CRADA Amendment with ELI - Feb 2000

- Black Crystal to higher temps stainless steel substrate surface preparation critical good in-air thermal stability to 375C ...
- Process scale-up to full length tubing
- Prototype tubing ready for field install early FY01

Black Crystal Solar Selective Absorber

Laboratory Samples ...

HCE Thermal Transfer Code

1-D code developed 1994 (Mancini, Sloan, Kearney)

Steady State Heat Loss and Gain - HCE

Converting to Visual Basic / Excel

- more user friendly
- adding features and options additional fluids (molten salts) glass envelope (coatings, heat mirror)
- plotting

Beta version - under evaluation

Summary

Heat Collector Element (HCE) - Selective Absorbers

- HCE Failure Data at SEGS VI & VII
- Purchase and Test new Solel UVAC Receiver install early FY01
- Apply protective (oxidation) coating over cermet prototype - autumn 2000
- Black Crystal on tubing prototypes early FY01
- Modernized HCE Heat Transfer Code
 release Aug 2000

